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A multichannel processing approach
to real time network detection, phase
association and threshold monitoring

FRODE RINGDAL AND TOINIOD IKViEIRNA

NTNF/NORSAR, Post Box 51, N-2007 IjeIl!er, Norway

Short Title: Multichaitnel processing of network data

Abstract

This paper presents an approach to multichaniel processing of data recorded by a
network of stations which represents an extension of the delay-and-sum bcamforming
traditionally applied in array processing. A numb,,r of geographical beam-steering
points are defined, and for each beam a set of time-aligned traces derived from
the network stations are processed together so a,, tu extratA, for each step in time,
a set of features corresponding to that particular lw,tni. Applying this approach
to the network of the three regional arrays NORESS, ARCESS and FINESA in
Fennoscandia, we demonstrate its usefulness for associating regional phases detected
at individual arrays and originating from the same event. We also give an example
of application addressing the problem of continuously monitoring the seismic noise
field. In this regard, we show that one can obtain, at a given confidence level, a
continuous assessment of the upper limit of magnitudes of seismic events that would
go undetected by such a network.

Introduction

In the processing of seismic network data, individual phase detections corre-
sponding to the same seismic event must be properly associated and grouped to-
gether. This is today usually done starting with an initial trial epicenter and then
applying various search strategies supplemented by combinational techniques. For
teleseismic monitoring using global network data, such techniques are well estab-
lished, and a large degree of automation has been achieved (Goncz, 1980; Slunga,
1980).

In recent years, the subject of regional monitoring using networks comprising
small-aperture arrays as well as single stations has attracted increased attention.
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The motivation has been the need for improving the capability to monitor muder-

ground nuclear explosion testing down to very low magnitudes. The inclusion of
regional phases in the plhase association procedure leads to a considerable increase
in the complexity of this task, and much effort has been devoted to developing
automated procedures for handling this problem.

Techiques for automatic association of regional seismic phases recorded by a
single array were first established in connection with the early NORESS array de-
velopments (Mykkeltveit and Ringdal, 1981; Mykkeltveit and Bungum, 1984). In
later developineiits, kiiowledge-based system concepts were introduced, and the al-
gorithms were ex)anded to include processing of data from a network of regional
arrays and single stations (Bache, 1987; Baumgardt, 1987). Bratt and Bache (1988)
developed an automated procedure for locating regional seismic events recorded by
such a network, incorporating arrival times and azimuth information.

The emphasis of the phase association methods developed so far has beeit to
build on the techniques previously applied successfully for g~obMl teleseismic net-
works, i.e., to associate individual phase detections at network stations using combi-
national techniques. lultichannel processing methods have received little attention,
rmdinly because the signal coherency across extended networks is too low to make
conventional beamformiig useful. Incoherent beamforming (Ringdal et al, 1972;
Husebye et al, 1972) has been suggested as a possible alternative approach. How-
ever, whereas this method i: effective for networks of limited aperture, its practical
usefulness for larger networks remains uncertain.

This paper presents a multichannel processing approach for network data that
we have termed "generalized beamforming". In a sense, it represents not one single
technique, but rather a framework for processing such data. Applying a procedure
similar to the conventional delay-and-sum beamforming used in array processing, we
define a number of geographical beam-steering points covering the region of interest.
For each beam point, we obtain a set of time-aligned input traces, from which a set of
beam features are continuously extracted. We show how this approach, in case of a
regional network, can be used to associate individual phase detections corresponding
to the same event. We also give an example of application addressing the problem
of continuously monitoring the seismic noise level, for the purpose of obtaining a
quantitative assessment of the upper limit of magnitudes of seismic events that
would go undetected by such a network.

Method

In this section, we outline the overall approach to the problems addressed in
this paper. We do not go into detail at this stage, but refer instead to subsequent
sections discussing how the general framework can be used in practical application
to various seismic monitoring problems.

Let us assume that a network of N seismic stations is available for monitoring
a specified geographical region. For simplicity of presentation, we will assume that
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these are all array stations, able to provide phaso velocity and azimuth information

for detected signals. Extension to the single-station case is straightforward, although
the quality of the results will naturally be reduced compared to when array stations

are available.
We first subdivide the region to be monitorepo by introducing a grid of J ge-

ographical ai ining points. Each such point then corresponds to a beam location,
so that the beam set covers the entire region with a predfined spacing of the grid
points.

For each 5tation in the network, we assume_ tbn the recorded data are processed
separately, using conventional algorithms. Specifically, let us denote by sink(7')
the beam at the iFth array (i = 1,2 .... N), steered toward the j'th beam point
(j = 1,2,...J) and corresponding to the k'th seismic phase (k = 1,2,... I K,,).
Here, Ki denotes the number of phases that might be of interest for the particular
statin-beam combination. We assume that these traces sjk(7) are subjected to
standard automatic detection processing, thus producing lists of signal onset times,
phase velocity/azimuth estimates and other detection parameters. as well as noise
level estimates during periods of non-detection.

In analogy with conventional array beamforming, the procedure is now to "isteer"
the network toward each beam location and process each beam individually by
continuously extracting relevant features for that beam as a function of time.

The networ. beam-steering is done by computing a set of time delays rijk, with
indices defined as before, for all combinations of beams, stations and phases. Stan-
dard travel-time tables are used in these computations. Thus, for the j'th beam, we
obtain a set of time-aligned channels:

3,(T)= {.ijk(T+r, jk)} k = 1 .... KI4; i= 1,...,N (1)

Here, 3j(T) can be viewed as a signal vector representing the individual sta-
tion/phase observations corresponding to a hypothetical event with origin time T
and located at the aiming point of the j'th beam.

Given this time alignment of the input traces, we now can proceed in several
different ways to extract, as a function of time, characteris- tic features of te seismic
field as seen when focusing on a specific beam area. One such approach is to consider
the detector outputs on each individual trace and combine this information. In
this case, the network beamforming process, for a given beam, at time T, can be
described as looking for a pattern of detections/non-detections that matches the
predicted pattern for a hypothetical event with origin time T and location within
the beam region. The actual beam value is derived from probabilistic considerations,
and in essence describes how well the observed pattern matches the prediction. By
moving along the time axis, we thus obtain a beam trace that can be subjected
to standard threshold algorithms for detection. The process can be supplemented
by various individual "quality of fit" measures calculated at each time point. An
example of this type of approach for the purposo of regional phase association is
given in the following.
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The generalized beamforming approach also provides a convenient tool to con-
tinuously assess the seismic noise field associated with a given beam. An application
of particular interest in a monitoring situation would be to calculate, at each step in
time, upper confidence limits for the magnitude of possible non-detected events for
each beam. This would be useful to obtain a realistic assessment of actual network
detection capabilities, at any given point in time. The paper presents an example
of practical application of this approach.

Regional phase association

The method lias been applied to a data base comprising 24 hours of recordings
from the regional arrays NORESS, ARCESS and FINESA (Mykkeltveit et al, 1987;
Korhonen ct ai. 198,'; lKvarna, 19S9), with a beam depioyment covering Fennoscan-
dia and adjacent areas.

A RONAPP-typc dctc to, (Mykkeltveit and Bungum, 1984) was first applied to
each array individually, using the broad-band F-K method (Kvwrna and Doornbos,
1986) to obtain phase velocity and azimuth for each detected phase. The resulting
detection lists then provided the input to the network processor.

The beam grid used for network processing is shown in Figure 1, and comprises
altogether 121 aiming points, approximately equally spaced. Typical distance be-
tween aiming points is 150 km.

In the network beamforming process, a simple model of assigning 0/1 proba-
bilities to individual phases at each station was used. We required that estimated
phase velocities, azimuth, dominant frequency and arrival times fall within prede-
fined ranges for a phase detection to be accepted for a given beam. These tolerance
ranges are specified in Table 1. Note in particular that only very general criteria are
applied, and we have made no attempt to optimize performance by regionalization.

With this simplified model, the network beamforming process in practice was
reduced to, for each beam and each time T, counting the number of phase matches
for a hypothetical event located in the beam region and having origin time 7". The
detection threshold was set equal to 2. Thus, all occurrences of two or i'- v- matching
phase detections were flagged as potential events. A typical beam vrace is shown in
Figure 2.

In analogy with conventional array processing, the beamforming procedure oc-
casionally produces side lobe detections, thus resulting in several different beam
detections for a given event. A gro,,ping/ reduction process is therefore required.

The grouping procedure applied in our case consisted of successively linking
together entries in the overall beam detection list. This was done in such a way
that a new entry would be linked if it had at least one individual phase detection in
common with a previous entry in the group. The maximum allowable duration of
a group was set to 10 minutes (in practice, the longest duration was 7 minutes for
this data set). In order to resolve obvious multiple events, groups were s-dit up if
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two P-detections from the same array occurred with more than 30 seconds arrival
time difference.

The results are summarized in Table 2. It is important to note that the total
of 91 groups comprise all possible events that could be associated, given the station
detection lists. Also, a scrutiny of the data shows that only 3 of these groups
contain multiple events, all of these being small presumed mining explosions seen
by one array only.

Some of the entries in Table 2, e.g., those generated from two secondary phases,
are probably questionable seismic events, and ev01n if real. may be impossible to
locate accurately without access to additional data. An upper magnitude limit
could be estimated for such events, in order to detercnine whether further detailed
analysis is desirable. However, the large Majonit\ of the entries appear to correspond
to real seismic events, and the grouping procedure facilitates thw subsequent detailed
analysis of the associated phases.

The network beamforming procedure gives an initial estimate of event location
by selecting the "best beam" in each group. This is defin,,d as the beam with the
greatest number of associated phase detections, and if equality, the smallest average
time residual of the detected phases. Since the initia beam grid is very coarse, we
applied a beampacking algorithm for each detection group, using a grid spacing of
20 km in order to improve the location estimate. The resulting location estimates
for the data set are displayed in Figure 3.

Table 3 lists the results of the automatic procedure, after beam- packing, for
those events for which independent location estimates based on local network data
were available. We note that the respective estimates are very consistent (median
difference 40 kin), and thus the beam results can be used as a reasonable first esti-
mate of event location. For more accurate results, availabie techniques for accurate
hypocenter location, e.g., the TTAZLOC procedure (Bratt and Bache, 1988)) should
be used.

Continuous monitoring of upper event magnitude limits

As a second application of the generalized beamforming procedure, we now ad-
dress the problem of monitoring the neise levels on each b, r. an "- tlis nfor-
mation to assess the size of events that might go undetected.

In formulating the approach, we consider a given geographical location, and a
given "origin time" of a hypothetical event. Assume that N seismic phases are
considered (there might be several stations and several phases per station).

For each phase, we assume that we have an estimate Si of the signal (or noise)
level at the predicted arrival time. For P-phases, S. might be the maximum short
term average (STA) value (I second integration window) within + 5 seconds of the
predicted time. For Lg, a longer STA integration window (e.g., 10 seconds) might
be used, and its maximum might be selected allowing a somewhat greater deviation
from the predicted arrival time.



We assume that the network has been calibrated (or alternatively that stan-
dard attenuation values are available), so that magnitude correction factors (b,) are
awilable for all pha.ses. Thus, if a detectable signal is present:

i, = log(Sj) + bi (i = 1,2,... N) (2)

lere, 7n, are esti natv' of the event magnitude 7n. Statistically, we can consider
each mi as sampled from a normal distribution (lr,a). Based on NORSAR experi-
ence, we consider a standard 7'alue of (r = 0.2 to be reasonable for a small epicentral
area, and this value will be used in the following.

Let us now aSsu ne a "noise situation", i.e., that there are rio phase detections
corresponding to events at the given location for the given origin time.

We then have a set of "noise" observations a,. where

a, = oo( S,) + b, (i= 1, .... 2 V) (3)

If a hypothetical event of iragnitude in were present, it would have phase ruag-
nitudes in, normally distributed around rn. We know that for erh phase,

m, < a, (I = 1,2 .... N) (4)

Following a procedme similar to that of Ringdal (1976), we now consider the
function:

f(m) = Prob(all mi _< ai / event magnitude i) (5)

For each phase, we obtain probability functions f,(m) and g,(m) as follows:

fi(m) = ProS(mi, < ai/ni) = 1 m - af) (i = 1,2,.N ) (6)
r

g,(m) = Prob(ni > ai/m) = ( rn (i = 1,2 .... N) (7)

where (D is the standard (0,1) normal distribution.

Thus, assuming independence,

N
f~m)= H ,(m)(8)

2*Z1

The probability g(m) that at least one of the observed noise values would be
exceeded by the signals of a hypothetical event of magnitude m, then becomes

g(m) = 1 - f(m) (9)

As illustrated in Figure 4, the 90 per cent upper limit is then defined as the
solution of the equation

g(m) = 0.90 (10)
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It is irupor',i t interpret the 00 Io'r centt linit!lt ied ab~ove in thle proper way.
Thius, it sl. Ad not be considevred as a 901, r ('ill n'w%ork detection threshold since

weha' .. ,de no allowar'ce for a ,1ginal-to-niiic#, riol o which would be required inl
or(!-r to delectCtit event, givxen the noise levels. RI i I er, the compl1 uted level is tied to

tie act uali v% obse rve(d noise valutes, and i o t lie fact t i a an fl hpothetical signal must
lvblwthese, vartes. Our 90 ir~ (.'iit nt repr.'iit the- largest mnagnitude of a

poihe Ult ci. in tile senlse thalt above- t16., limit, there is at least a 90 per
cent prohabi lity t Iiat onte or miore- of the ob.erved i iI e val ies would be excC(hed
h% the sintsof 'Ith ani(ei

As allt a ppln. il (i f he nIlet hod. wc St,d ;ti i aroa as ,htowni inl Vigure 5
1t11:lttd ;o >iiiil'r dt ;11iee fromi- tie 1iei: ., , . If(r etch of the three ctirays.
olne Pln beaul anid o1n1 l" beam were steer- i t this locati. Trhe beam1- tracs
Were filtere d using the freque(ncy' hands :3 -!' If, ( itn and 2 41 Iz ( Lg). Magnitude
Calibratiton va lies 0,!) were obt al ted 1> rcc 1agpeio l recorded evenits of
known magnitude, ( \Il.) andl at siminicr dist alie ares all(l then deterining b,
yaius iMdtlciinleitly for I'n and Jar-.

Based ott these input traces froin the( t h ree arraY:s. a ncltwork beamn was then
Gformed sIntiedeasfrerh1) s't t r, -.,po dcd to tite given location.

Arrival tuini t'le ramies wvere set to ±-4-5 seco n !s for Pn and ± 10 seconds for Lg.
This is nemiglily consistent with a bea iii ra~diuis of -50 ut as shown onl the figure. STA

tegr-ation wvindows were set to I second fir -lPn aid 10 scot()ids for Lg. TIhe values of
Si in eqi. (2) were obtained as the maximumi STA valules within the respective arrival
time toloratices, using the rnid-poinmt of the inttegrationi iitervai as time reference.

W\e chose to analvyze a :3 1/2 hour interval durittg which four regional seismic
events Of MVL > 2.0 were reported in the Helsinki bulletin. These events were all
located outside the beam region to be studied, andl one of our aims was to investigate
hlow interfering signials from these events wotuld intfluence, the monitoring capability
for the clioqsn be-am region.

Figure 6 shows, for the beam region considered, the computed 90 per cent upper
magnitude limits, plotted as a function of time. In thiis figure, only the Pn p~hase has
been used, anid the three arrays are shown individually and in combination (bottom
t race).

It is clear fromn Figure 6 that when considering individual arrays only, there are
several possible time intervals when relatively large events (ML - 2.0-3.0) located in
the beam area might go undetected because of signals from interfering events. How-
ever, when the I'n phases are comnbined, these instances occur much more seldom.

Figure 7 shows a similar plot, but this time including both the Pn and the Lg
phase for each array. Even on an individual array basis, this causes substantial
reduction in the upper magnitude limits. For the cottibined plot (bottom trace of
Figure 7), which takes into account all 6 Pun and Lg pha.es from tile three arrays, we
see that the upper limit is well below ML = 2.0 for the entire time interval. Thus,
we may conclude that, at the specified level of ionfnretce, no event of ML, = 2.0 or
higher occurred in the beam region dunring the time period Considered.



Discussion

With regard to pliae association, the generalized beamforming approach pre-
sented in this paper provides an effective method to group all combinations of in-
dividual phase detecticus tbat could possibly correspond to the same seismic event.
At the same tinie, preliminary estimates of epicenter and origin time are obtained.

The primary importance of this would be to obtain a starting point for subse-
quent detailed interactive analysis aimed at precise determination of source paran-
eters. In particular, e:prt systein approaches (either script-based or rule-ba-ed)
could be invoked at t his sta-v. Tlie advantage of appliying the generalized beam-
forming as the first step is to reduce the amount of combinational processing that
would be necessary otlerwise. It is here noteworthy that the processing load when
applying beamformiing increases in a linear fashion when the number of individ-
ual phase detec-tions increase, whereas combinational possibilities tend to increase
exponentially. While we have in this paper used only a three-array network, the
extension to larger networks is clearly straightforward.

The application of the method to provide continuous monitoring of upper rnagni-
tude limits at specified I)am locations provides a useful supplement to standard sta-
tistical network capability studies (e.g., Wirth, 1977; Ringdal, 1086). In particular,
this application would give a way to assess the possible magnitude of non-detected
events during the coda of large earthquakes. In such situations, it would be appro-
priate to use global network data and include as many relevant phases as possible
for each network station. For example, while an expected P phase at a given station
may be obscured by the earthquake coda, later phases such as PcP or PP may be
less influenced, and the noise level at their respective expected arrival times would
therefore provide important information as to the size of possible undetected events.

As a final comment, we note that the approach presented here to upper limit
magnitude calculation could be applied to extend the utility of various discriminanits,
such as M,:mb. For sriall explosions, surface waves frequently are too weak to be
observed at any station of the recording network. Obtaining reliable upper bound
on M, in such cases would expand the range of usefulness of this discriminat. lTt

practice, an "upper bound" for single-station measurements has often ber' <,in as
the "noise magnitude" at that station, i.e., the M value that corrkonds to the

actually observed noise level at the expected time of Rayleigh wave arrival. The
proposed procedure will include this as a special case of a more gemeral network
fori. ilation.

In future studies, we plan to investigate the application of more sophisticated
probabilistic models in the generation of beam traces and the continuous extraction
of features associated with the individual beams. Application to larger networks,
including teleseismic monitoring using global network data, will also be considered.

• -, mmmw nnnn mumunm m nnlllln I~m mmn n I I
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Table Captions

Table 1. Acceptance limits for parameters used in the network beamforming pro-
cess, as applied in the example described in the text.

Table 2. Phase groups associated by the network beamforminng procedure for a
24-hour interval, based on NORESS/ARCESS/FINESA detection lists.

Table 3. Location estimates obtained automatically from the beampacking proce-
dure compared with iidc'penderit network locations from the Helsinki and Bergen
bulletins. Note the good consistency, especially for events with more than one de-
tecting array.
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Figure Captions

Fig. 1. Beam grid used in the generalized beamforming procedure for the purpose
of associating regional phases from NORESS, ARCESS and FINESA. The location
of the three arrays is shown on the map.

Fig. 2. Illustration of the beamforming procedure, using 0/1 weights for individual
phase detections as described in the text. For each of the three arrays, detection
time traces for Pn and Lg are displayed in the form of step functions. A value of I
for these functions indicates that an acceptabl, detection (with regard to azimuth.
phase velocity, etc.) has occurred within a specified time window. To illustrate the
beam delays, an arbitrary origin time T has been marked on the beam trace, and the
predicted arrival times corresponding to a hypothetical event at the beam locatioi,
with origin time T are marked as arrows. The network beam (top trace) is a sum of
the time-aligned individual traces, including the Pg and Sn phases, which are not
shown on the plot.

Fig. 3. Event location results, after beampacking, for the phase groups associated
by the network beamforming algorithm. The location of the three arrays NORESS,
ARCESS, FINESA is also shown.

Fig. 4. Illustration of the procedure for calculating upper magnitude limits. Each
network station gives rise to a probability distribution gi(M) as described in the
text. The dottet-curve, g(M), represents the probability, given event magnitude M,
that the signal from a hypothetical event would exceed the actually observed noise
level at at least one station.

Fig. 5. Location of the beam area used in the example of continuous monitor-
ing of upper magnitude limits on non-detected events. The area covers a circle of
approximately 50 km radius, and is situated at similar distances from the three
arrays.

Fig. 6. Results from the continuous threshold monitoring of the area shown in
Figure 3 for a 3 1/2 hour period, using Pn phases only. The top three traces show,
for each array, the largest magnitude of a possible non-detected event (confidence
90 per cent) as a function of time. The bottom trace shows the result of combining
the observations from all three arrays (Pn phase only) as described in the text.

Fig. 7. Same as Figure 6, but using both the Pn and Lg phases for the upper
magnitude limit calculations. Comparing with Figure 6, we note that this serves to
lower the thresholds, both for each individual array (top three traces) and for the
combined results (bottom trace).

13



Table 1

Phase Type

Pn Pg Sn Lg Rg

Distance interval I ) 160-3000 0-600 160-3000 0-2000 0-400
(km) for which a
phase is accepted

Maximum allowable 15 20 30 35 40
deviation from
predicted arrival
time (s)

Maximum allowable 20 20 20 20 20
azimuth deviation
(degrees)

Acceptance limits 5.8-14 5.8-10 3.2-5.8 3.0-5.0 2.5-3.7
for apparent phase
velocity (km/s)

Acceptance limits2 ) 0.5-20 0.5-20 0.5-20 0.5-20 0.5-20
for dominant
frequency (Hz)

1) For NORESS, the Rg phase is' not included in the phase table

2) For FINESA, a lower frequency limit of 0.9 Hz is used fer all phases.
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Table 2

Number of phases for best beam
in each group

Number of phase groups: 2 3 4 5 6 7 8

NORESS only 18 13 4 1 0 0 0 0
ARCESS only 34 19 10 4 1 0 0 0
FINESA only 14 13 1 0 0 0 0 0
Two arrays 17 9 4 3 0 1 0 0
Three arrays 8 0 0 2 0 1 3 2

Totals 91 54 19 10 1 2 3 2
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Figure 1

Initial beam grid
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Figure 2
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Figure 3

Events located by beampacking
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Figure 4
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Figure 5

CONTINUOUS THRESHOLD MONITORING
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Figure 6
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Figure 7

CONTINUOUS THRESHOLD MONITORING - PN AND LG PHASES
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